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The Open-Ring Line: A Low-Loss
Surface Waveguide

CLAUDE FRAY anp ALBERT PAPIERNIK

Abstract—This paper presents the theoretical analysis of the electro-
magnetic properties of the open-ring line by means of the Hankel trans-
form. Fields components, stored energy, power flow, dispersion relation,
and energy distribution are calculated. Measurements have corroborated
our theoretical results. These results help in the design of low-loss line
operating in the fundamental dipolar hybrid mode. The measured attenua-
tion on a prototype line consisting of equally spaced aluminum rings held
by a metal rod is less than 5 dB/km below 1.8 GHz. Among the possible
applications are railway traffic control and railway obstacle detection.

I. INTRODUCTION

OMPREHENSIVE reviews of low-loss open trans-

mission lines were recently given [1]-[4]. Such lines
have possible practical applications such as railway traffic
control, railway obstacle detection, and telecommunica-
tions. Low-loss open guides may be divided into leaky
waveguides such as the TE, mode leaky circular wave-
guide [5] and surface waveguides such as the Goubau line
[6] or the corrugated Y guide [7]). The open-ring line
consisting of equally spaced metallic rings is a surface
waveguide. We have investigated this periodic structure
because of its theoretical importance and because of its
expected low-loss characteristics. Preliminary theoretical
results have been presented at the 1976 MTT-S Interna-
tional Symposium [8].

An exact approach consists of matching the field com-
ponents inside and outside the ring line. In that way, we
obtain a homogeneous system of linear equations. The
dispersion relation follows from the requirement that the
determinant vanishes. This procedure is burdensome be-
cause a determinant of large dimension must be solved to
achieve sufficient accuracy. We shall assume that the rings
are infinitely thin, are perfectly conducting, and have a
width small compared with the line pitch and the wave-
length (Fig. 1). Postulating a likely current distribution on
the rings and using the Hankel transform of the fields, we
deduce the field components, the stored energy, and the
power flow. The dispersion relation is obtained either by
equating the magnetic and electric stored energies or else
by writing the boundary condition on the rings. Measure-
ments have corroborated the calculated values. These
results permit the design of low-loss rings line operating in
the fundamental dipolar mode.
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Schematic representation of the open-ring line (a ring radius, H
line period, w ring width).

Fig. 1.

II. THEORETICAL FORMULATION

A. Surface Current Density

Because the width w of the rings (Fig. 1) is small
compared with the line pitch H, it is permissible to neglect
the longitudinal (z-directed) current. Thus the field is
produced only by the aximuthal current density J,

o0
Jp=Jp c0s e/’ = A8(r—a)e’@~F7 ¥ f(z) (1)
p=—00

where A4 is a constant which determines current and field
intensity, n is a positive integer which characterizes the
symmetry in 4 of the currents and fields, SH the phase
shift between adjacent rings, and fp(z)e"jﬁ" the current
distribution across the pth ring. We shall postulate for the
current distribution that is applicable to an isolated
narrow thin ring

fp(2)=|W{(Z+%—pH)(pHJr%_Z)}—l/z’
0,
|z—pH|< 3 @

elsewhere.

This approximation was used earlier by Sensiper in his
helical line study [9]. The variation in cosnf for the
current density implies for the azimuthal variation of the
fields components, through Maxwell’s equations

E =¢(r,z) sin nfe’’, E,=e,(r,z) cos nfe’"
E,=e,(r,z) sin nfe’, H,=h(r,z) cos nfe’*’

Hy= hy(r,z) sin ne’’, H,=h(r,z) cos ne’'. (3)

B. Field Component Expressions

From Maxwell’s equations, we deduced the following
relations satisfied by the longitudinal components:
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where k = w(epw)!/?*=w / c is the wavenumber, € the permit-
tivity, p the permeability of the medium, and ¢ the light
velocity.

Using Hankel transform (see Appendix 1), we obtain

%M _ jn 9 [
— {n} = _J% 7 P
822 +(k*—s%)e! 5 fo J(rs)jpdr
3%hir 0 )
o —sz)h{"}—sfo rJ(rs)jpdr. (5)

In the current density expression (1), the periodic func-
tion X ,f(z) given by (2) is expanded in a Fourier series

= 43(r - a)e—fﬂzpiw @)= —8(ra)

x .
S D (6)
m= — oo
where /== aw is the total current on a ring, and
H/? 2'lrjmz/H
= —f+ / dz=J0( 7r—£>
H/2 w H
\/(” 77 -7)
B,=8+2mw/H.
Thus we have
{n}=n_1 § ﬁ D e*/ﬁmZ.ﬂ'_(ﬂ
weH , S ," " " S2+(X,2n
In & s . 8T (as)
A= —— D e Pz P "/ 7
H mzw " S2+0(,7;, ( )
with
W= B2

Introducing the magnetic transverse component into
the relation V-H=0 and the z component of VX H = jwe
E, we obtain

ah{"}
(hr+h0){n+1}=%\ijw€e§n}_ z ]

0z
(®)

Similarly, introducing the electric transverse component
into the relation V-E=(V-J)/jwe and the z component of
VX E= —jwuH, we obtain

1
@fqﬁ””=;pwmw—

- 1 him
—p W0 o 2 el ¢ 22
(h,—hy) p [ Joeel™ + —- }

del™  jn oo .
—'—a— - Ze—/(; Jn(rs)“rodsJ

z
Jn ® .
iia J (rs)j ds].
L7709

©)

1

de!
(e,+¢) " = S {jwuh{"} + —
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The fields components are obtained by means of the
inverse Hankel transform (Appendix I) and using the
following integral [10]:

F,,m(a,r)=f°° J,(as)J, (rs)ds

We have (¢ is omitted)

K. (a,a)1,(a,r), r<a
IL(a,a)K (a,r), r>a

(10)

s+a

D_F, e /P

m= nm

nl
E, 2= T sin nﬁmzwﬂm

jni D, aF k af o—Bnz
E = stman_Zw 3'[ m E)r r 8a
I SR B2 2, 3 Fum | —in
E, 7 °os nHme o [ BiF,,,tka adr 1€
H,= —la 3 e /Bn?
H mEw
= __‘]I S _.Dﬂ ﬁ y E_zﬂﬂ —JBnz
H 7 cos nﬁmzw > m[ r F,+a s |€
& D oF a OF .
=L o m nmog 2o =Bz
H, sin nﬂmzw > m[ T 7 5 }e .

(11)
It is useful to check that, at r=a, the tangential electric
field is continuous everywhere

BB B~

and that the discontinuity in the tangential magnetic field
is proportional to the total surface current density

. I . ke .
Hi—Hf=—e¢“" cosnf >, D,e P
H o,
The subscripts i and e refer, respectively, to the internal
(r<a) and external (r >a) field. These relations verify the
continuity requirement of the fields at r=a.

III. ENERGETIC AND DISPERSION RELATIONS

A. Stored Energy

After integration over #, the time-average magnetic
energy and the time-average electrical energy per unit
length are

73 77:”‘ H/2 * * *
W= 75 f f_H/z(h,h, + hyhd + h.h®)r dr dz

W, =Z‘]§f0 f_HI:/Zz(ere,”‘+egeg‘+eze;")rdr dz. (12)

When the total field components are written in terms of
their space harmonics, the general term of the double
summation for m#p can be written in the form
Zun (N (1) exp {j(p—m)27z/ H}. After integration over
z from — H/2 to H/2, the cross terms vanish and the
resulting expression is the sum of the energy stored by
each space harmonic individually. After applying the
Hankel transform, (12) become
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TABLE I
DisPERSION RELATION, STORED ENERGY, AND POWER FLOW
(ARGUMENT OF MoDIFIED BEsSEL FUNCTION Is a,,q)
o J’ Bz
Dispersion z n2 ——%‘- I (g a) K (y a) + k2 a2 I' (o_a) K! (ama) Di =0
relation m="w [ o n m n m n o n
2.2
2 hag 2 2 ng 4 2
= mI K 2 2 2.2 , . m o2 2 _ktat 2
wE = 2 .2 E Zcx*a[a% (Bm *ED vk }[In Knﬂn Kn} - 4 (k OLm) InKn 2 InKn Dm
4y e H m=—® ml% ocm am
2,2 2 2
2,2 © 2 n’s 8- a
- m “k a n 2 2 22 ' ol m _ o m - 2
Wy = —— ¥ {—Z—OL—[T(Bmd—k)+ka][InKn+InKn] I K 5 Inxn} D
4w e W m=— m L & o o4
m m m
2 T o8 2 2,2 22
L mé alin 2 2 22 . ' _n'k __k"a Vet 2
P=2m€H2 mz-w§{7 [a_2(8m+k)+ka][InKn+InKn] 3 I K . I KDDL
m m
— T 00 T © : :
W, = _Hf s h{MR*n) ds + _.uf S[(hr+hg){n+l) funcqon of z. But since thg total power flow cannot be a
4 Jy 8 Jy function of z, it is permissible to take the average value P
of P,, over one period. Using the Hankel transform, the
1 — — . . .
(R +hE) T (b, —py) 1 (h*—hF)t" 1}] ds time-average power flow can be written in the form
=T[5 elmexint goq 7€ [ (1) P=T ["[(e,— &)+ (hr + B+ D)
r=— | sel"e ds+——f s[(e,—ea) 4 r € -t hy
0 8 Jo 0

(er—ep)"tV +(e,+e9){"_1)(e,*+eg‘)("_l}] ds.

Using (8) and (9) and introducing the values of e{"} and
h{" given in (7), we obtain

= _ 7712 o« D ,
E 40k H mE "
foo a?(s*+1)s¥,X(as) + n?B2J X(as) &
. s
0 s*(s?+ oz,fl)2
2 00
Wy=—1 D2

40’e H? m==w

o n2{ B252 4 (s2— k)22 + k4222
A UG} e U LT AN
0

sz(s2 + a,%,)z
Using the integrals given by Appendix II we obtain the

expressions in Table 1. The total stored energy per unit of
length is

W= Wyt Wy =2, =2, (13)

B. Power Flow

The time-average energy flow along the line is the real
part of the integral of the complex Poynting vector over a
cross section. After integration over #, we obtain

P,=T Re [ I “(ehf — eph¥)r dr]. (14)
2 0

The general term of the double summation m#p is a

~(e,+e) "V (BB "V s ds.
With (7)-(9), the power flow becomes

,”12 ]

2weH? m== o
[ KB a) 6 e
A .

s(s2+ oz,%,)2

D2

P=

Integrals given in Appendix II provide the final expression
for the power flow in Table 1.

C. Dispersion Relation and Group Velocity

__The dispersion relation is obtained by specifying that
Wy =Wy (see Table I). The same dispersion relation
could be obtained by writing

f E-J* dv=0
v
because, from Maxwell’s equations

WM— WE

=L -J* =
= fVEJ dV=0 (15)

where V is the volume where the current is different from
zero, that is, on the ring surface. The group velocity
which, for a periodic structure, is equal to the energy
velocity [11], is the ratio of the average power flow to
average stored energy per unit length

_dw _ P

Ug—‘d—lB— (16)

w



FRAY AND PAPIERNIK: LOW-LOSS SURFACE WAVEGUIDE

kH
0 [ | e |
1.002
08| . 1001 i

? / n-=2
L
0.6
0.669.
0.66
0.4

| T —

0.2 | 0331

0.336

L
o T4

T2 37, T
AH

Fig. 2. Theoretical dispersion curves (a/H=3, w/H=1/4). The de-
tails of the curves near the maxima are shown inside the circles with
an expanded vertical scale.

W is always positive and the group velocity has the same
sign as the power flow. For SH = 7 whatever the value of
w, P goes to zero because of pairing of equal positive and
negative terms of the sum (B,,= —B_,,_,). This property
is consistent with the requirement that the group velocity
is zero at cutoff.

IV. ANALYSIS OF THE ENERGETIC AND DISPERSION
RELATIONS

The solution of the dispersion relation (Table 1) gives
the dispersion curves. But, to reduce the computation
time, we have chosen to integrate (16), which can be
written

2 flx)

with x=8H and y=kH.
This first-order differential equation is solved numerically
using a fourth-order Runge-Kutta integration process
with initial condition y(x)=y, obtained by solving the
dispersion relation for x,= . The value of stored energy
and of power flow is given during the integration process.

A particular line with a/H=3 and w/H=1/4 has
been studied in detail. In the following figures, the limit
values, obtained with only the fundamental term of the
series reported in Table I, are represented by double
arrows. Fig. 2 shows the dispersion curves of the three
first modes. From this diagram, we see that only one
hybrid wave can propagate along the line for each value
of n#0 and the circular symmetry mode n=0 does not
exist. Accordingly, the fundamental mode has dipolar
symmetry. For this value of a/ H, the dispersion curves go
through a maximum (ka),,,=n+An with 0<An<1; but
when a/ H decreases, the maximum goes on the right and
disappears.

In Figs. 3 and 4, we have plotted the variation of power
flow and stored energy for the first modes against the
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Fig. 3. Variation of the normalized power flow as a function of the
radial propagation coefficient for the first modes (a/ H=3, w/H=1/4).
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Fig. 4. Variation of the normalized stored energy as a function of the
radial propagation coefficient for the first modes (a/H=3, w/H=1/4).

radial propagation coefficient a, =(82— k%2 When aq,
decreases to zero, cW/ZI? and P/ZI* increase and tend
to a limit for the modes 3 and 4, whereas they tend 1o
infinity for the first two modes.

V. COMPARISON OF EXPERIMENTAL AND
THEORETICAL VALUES

For recording the dispersion curves of the first modes,
we introduced a section of the ring line between two
metallic planes to obtain a resonator. The geometrical
parameters of the line are equal to those of Fig. 5, but ring
thickness is 0.5 mm. Two Teflon supports hold up the
rings and keep constant the period.

From Fig. 5, we see that the experimental curves are
practically identical to the theoretical ones (error is re-
spectively less than 0.15 and 0.3 percent for the two first
modes). The good agreement between the theoretical and
experimental values of the # mode (Fig. 6) when the ring
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Fig. 5. Theoretical ( ) and experimental (—-—-—--— ) dispersion

curves for the two first modes. Geometrical parameters: 2a=7.05 cm,
H=3 cm, w=05 cm (a/H=1.175, w/H=1/6).
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Fig. 6. Values of the 7—cutoff versus period of the modes in Fig. 5
( : theoretical, -~-—-—: experimental).

pitch H increases, corroborates the validity of the theore-
tical analysis.

VI. ELECTROMAGNETIC ENERGY DISTRIBUTION
AROUND THE LINE

The energy concentration around the line is measured
by the amount of stored energy per unit length outside a
cylinder of radius d >a surrounding the line. This stored
energy is given by (12) except for an integration over r
from the radial distance d to infinity. Using the field
components, we obtain, after rearranging, the following
expression:

- al? S
Waee = 4% eH? m=2—oo 2

m

D,i{ {nzﬂfz(aﬁ,a)
a,

2
+ k2a21,;2(a,,,a)} { k2d2[ K,,Z(amd)(l + aZdZ )

2 2
- Kf(amd)} - %t’—‘—dK;(amd)Kn(amd)}
2k2
—4n2§m3—‘fIn(ama)f,;(ama)x,f(amd)}.
(4

m

Wd.{W
‘\ ka ‘
T
.75 1.0y
07 C D |
SRR
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.
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/3H
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D
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Fig. 7. Field extension around the ring line against the ratio d/a

(d>a) witha/H=3,w/H=1/4.

The ratio of the stored energy outside a cylinder of radius
d to the total stored energy (W,,/W) for the dipolar
mode, is plotted against d/a for various points of the
dispersion curve in Fig. 7. The rapid decrease of the field
extension with increasing a, =( 82— k%)'/2 can be noticed.
This property gives the possibility of restricting the field
extension to any desired value.

VII. StupY OF A Low-Loss PROTOTYPE LINE

The fundamental mode is somewhat different from the
other modes of the ring line. Its dispersion curve goes
down to low frequencies with a phase velocity and a
group velocity near to the light velocity. The power flow
becomes large, and the field extension around the line is
important. Accordingly, the line attenuation a,=P,/2P
(P, ohmic losses and P power flow) tends to zero as P
increases for I constant. So, by varying the phase constant
B of this mode, it is possible to select the concentration of
energy around the rings and the value of attenuation. Loss
measurements have been made on a prototype line operat-
ing on this mode.

A. Prototype Line and Measuring Equipment.

The line consists of rings at equally spaced intervals
along a metallic rod (Fig. 8). The electromagnetic in-
fluence of the rod is small because the mode is dipolar.
The rings and the rod are of an aluminum alloy (AGST,)
for which the conductivity is 6=2.857% 10" 8/m. A sec-
tion of this structure is introduced between two aluminum
plates, 2-m square, to form a resonator. One of these
plates is fixed, the other attached to a movable carriage
permitting adjustment of the resonator length. A series of
holes was drilled in these short-circuit planes, allowing us
to investigate the  and § variation of the field [12].

B. Dispersion Curve and Attenuation Constant

Fig. 9 shows the theoretical (a) and experimental (b)
dispersion curves of the dipolar mode. The slight dis-
crepancy between theoretical and experimental values is
explained by the fact that there is no rod in the theoretical
case. On the other hand, the rod introduces another mode
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Fig. 8. Low-loss prototype line (2¢=0.03 m, H=0.028 m,

w=1=0.005 m).
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/3H
Fig. 9. Dispersion curves of the prototype line (Figs. 8, 9y a ———— the-
oretical curve and b - —-—-— experimental curve for the dipolar mode.

(c) but its stopband frequency is much lower than that in
the dipolar mode. It corresponds to the fundamental
mode of the structure studied by Birdsall and Everhart
[13]. This periodic structure is a modification of the con-
trawound helix introduced by Chodorov and Chu [14].
Measured attenuation of this mode is important. The
attenuation constant of the dipolar mode is obtained by
the classical relation a, =w/2v,Q, where Q, is the Qfac-
tor of the line. To that effect, we measured the Qfactor of
the resonator by transmission method for several lengths
of the line at the same frequency; Q, is deduced from the
Qfactor of the resonator by subtracting losses on the
short-circuit planes [15]. Fig. 10 shows the relative phase
velocity and the measured attenuation for the line shown
in Fig. 8. The attenuation is less than 5 dB/km below 1.8
GHz. A theoretical estimation of attenuation has been
made elsewhere, and these values corroborate the experi-
mental ones [15]. Field distribution near the ring line was
obtained [16] with close agreement between measured and
calculated values, but we omitted it from this paper. For
instance, the electromagnetic energy distribution is con-
tained in a 40-cm (=26.7 a) radius cylinder when e, is
equal to 10 dB/km.
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Fig. 10. Measured variation of the relative phase velocity and attenua-
tion as a function of frequency.

VIIL

The open-ring line is a surface waveguide just like
dielectric rods and dielectric pipes. But its dispersion
diagram is quite different because it does not have circu-
larly symmetric TE or TM modes. However, the open-ring
line and dielectric guides have one property in common:
the fundamental mode is a hybrid dipolar mode without
lower cutoff frequency. At lower frequencies, the electro-
magnetic wave propagates with phase velocity and group
velocity near the light velocity, and the fields extend
considerably beyond the line. By varying the radial propa-
gation coefficient of this mode, it is possible to select the
energy concentration around the rings and the power flow
value. The wider the energy is spread, the smaller the
attenuation constant. This property has been corroborated
by the attenuation values of a prototype line operating on
the dipolar mode of the ring line. The measured attenua-
tion (less than 5 dB/km below 1.8 GHz) allows us to
consider the open-ring line as a low-loss Ime. The line
attenuation can be improved if the aluminum rings are
replaced by copper rings. This line can be supported
above the ground on plastic pipes that have to be set on
the plane of rod. In this way, the electromagnetic field is
only slightly perturbed (dipolar mode). These results show
that practical applications like railway traffic control and
railway obstacle detection may be considered [17]. In such
applications, considerable difficulties may be encountered
due to bends in the path of the line, scattering by the
supports, and atmospheric conditions. Further studies
could be required to analyze such effects.

CONCLUSIONS

APPENDIX |
HANKEL TRANSFORM PROPERTIES {18], [19]

The n-order Hankel transformation transforms a func-
tion u(r) into a new function u{"}(s) such that

u{")(s)='/(;wr J(rs)u(r) dr

u(r)= fo s I (rs)ut™(s) db.
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Operational properties

(%){”}=2_sn[u<n+l)+u(n—l}]

{n}
(%) =— %[(n+l)u{”_”—(n—l)u{”“)]

and integral product
fws ul" ()l (s) ds= fwru(r)v(r) dr
0 0
are well suited for cylindrical coordinate system.

AprPENDIX 11

2
f = s (as)ds _ 1 (aa)K,(aa)
o s*+a?

oo ¢2J’2
f M = azl':(aa)K':(aa)
0 s*+a?
foo J2(as)ds
0

(s2+a?) = 2%{I':(aa)Kn(“a)'*'In("‘”)K,:(aa)}

fw s as)s ds
0

aa , ,
oy~ 7 MK )

+1,(aa)K;(aa)) { I+ az; }

(1

(2]

(3]

[4]

(51

(6]

[

(8]
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[10]

(11]
[12]
(3]

[14]
[15]

[16]

[17]
(18]
[19]

REFERENCES

H. M. Barlow, “Millimeter waves and optical waves for long
distance telecommunications by waveguide,” in Proc. Electromag-
netic Wave Theory. New York: Pergamon, 1965, pt. 1, pp. 389
397.

J. C. Beal, J. Josiak, S. F. Mahmoud, and V. Rawat, “Continuous
access of guided communications (C.A.G.C.) for ground trans-
portation system,” Proc. IEEE, vol. 61, no. 5, pp. 562-568, May
1973.

F. Ries and C. L. Cuccia, “Status report communications in mass
transit guided roadway systems,” Microwave System News, pp.
24-42, Dec./Jan. 1975.

T. Nakahara and N. Kurauchi, “Millimeter waveguides with ap-
plications to railroad communications, in Advances in Microwaves,
vol. 4. London: Acad. Press, 1969, pp. 191-300.

J. Amemiya, N. Kurita, K. Uematsu, T. Nakahara, and N.
Kurauchi, “Leaky waveguide radar system,” Sumitomo Elec. Tech.
Rev., no. 9, pp. 82-92, 1967.

R. G. Fitzgerell, L. L. Haidle, and J. F. Partch, “A surface-wave
transmission line for vehicular communication,” Final Tech. Rept.
for U.S. Dept. of Transportation, Office of High Speed, Inst. for
Tele. Sciences, Boulder, CO, 1970.

Y. Amemiya, N. Kurita, T. Nakahara, N. Kurauchi, and T.
Nagao, “Surface wave radar system,” Sumitomo Elec. Tech. Rev.,
no. 3, Jan. 1964.

C. Fray and A. Papiernik, “Theoretical analysis of open ring line,”
presented at the 1976 Int. Microwave Symp., Cherry-Hill, NJ, June
14-16, 1976.

S. Sensiper, “Electromagnetic wave on helical conductors,” MIT
Res. Lab. Elect., Cambridge, MA, Rep. 194, May 1951.

1. S. Gradshteyn and 1. M. Ryzhik, Table of Integral Series and
Products. New York and London: Academic Press, 1965, p. 679
formula no. 6.541.

D. A. Watkins, Topics in Electromagnetic Theory. New York:
Wiley, 1958.

A. Papiernik and C. Fray, “Low-loss open transmission line: The
open ring line,” Electron. Lett., vol. 11, no. 10, 1975.

C. K. Birdsall and T. E. Everhart, “Modified contra-wound helix
circuits for high-power traveling wave tubes,” IRE Trans. Electron.
Devices, pp. 190-204, Oct. 1956.

M. Chodorov and E. L. Chu, “Cross-wound helices for traveling-
wave tubes,” J. Appl. Phys., vol. 26, pp. 3334, Jan. 1955.

C. Fray and A. Papiernik, “Theoretical and experimental attenua-
tion of the open ring line,” presented at the 6th European Micro-
wave Conf., Rome, Italy, Sept. 14-17, 1976.

C. Fray, “Propriétés electromagnétiques de la ligne a anneaux
ouverte ou blindée,” Thesis, Universit¢ de Limoges, Limoges,
France, May 1977.

AN.V.AR. 74-24-274 (French Patent), “Ligne ouverte a tres fa-
ibles pertes.”

G. N. Watson, A Treatise on the Theory of Bessel Functions.
Cambridge, England: Cambridge Univ. Press, 1966, pp. 453-468.
S. Colombo, Les Transformations de Mellin et de Hankel, CNRS,
1959.




