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The Open-Ring Line: A Low-Loss
Surface Waveguide

CLAUDE FRAY AND ALBERT PAPIERNIK

Abstract-This paper presnts the theoretkd analysis of the ektro-
magrretic properties of the open-ring fine by means of the Harrftel trans-
form. Fields components, stored energy, power flow, dispersion relatio~

and energy distribution are calculated. Measurements have corroborated

our theoretieat s’eaokv. These results help in the deaigo of low-loss fine

operating in the fondmnental dipobu hybrid mode. The measured attenua-

tion on a prototype line eonsistiog of equally spaced ahnninmn rings held

by a metat rod is less than 5 dB/fmr below 1.8 GHz. Among the possible

applications are railway traffic control and raifway obstacle deteetion.

I. INTRODUCTION

c OMPREHENSIVE reviews of low-loss open trans-

mission lines were recently given [ 1]–[4]. Such lines

have possible practical applications such as railway traffic

control, railway obstacle detection, and telecommunica-

tions. Low-loss open guides may be divided into leaky

waveguides such as the T&l mode leaky circular wave-

guide [5] and surface waveguides such as the Goubau line

[6] or the corrugated Y guide [7]. The open-ring line

consisting of equally spaced metallic rings is a surface

waveguide. We have investigated this periodic structure

because of its theoretical importance and because of its

expected low-loss characteristics. Preliminary theoretical

results have been presented at the 1976 MTT-S Interna-

tional Symposium [8].

An exact approach consists of matching the field com-

ponents inside and outside the ring line. In that way, we

obtain a homogeneous system of linear equations. The

dispersion relation follows from the requirement that the

determinant vanishes. This procedure is burdensome be-

cause a determinant of large dimension must be solved to

achieve sufficient accuracy. We shall assume that the rings

are infinitely thin, are perfectly conducting, and have a

width small compared with the line pitch and the wave-

length (Fig. 1). Postulating a likely current distribution on

the rings and using the Hankel transform of the fields, we

deduce the field components, the stored energy, and the

power flow. The dispersion relation is obtained either by

equating the magnetic and electric stored energies or else

by writing the boundary condition on the rings. Measure-

ments have corroborated the calculated values. These

results permit the design of low-loss rings line operating in

the fundamental dipolar mode.
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Fig. 1. Schematic representation of the open-ring line (a ring radius, H
line period, w ring width).

II. THEORETICAL FORMULATION

A. Surface Current Density

Because the width w of the rings (Fig. 1) is small

compared with the line pitch H, it is permissible to neglect

the longitudinal (z-directed) current. Thus the field is

produced only by the aximuthal current density J@

JO= j~ cos ntlej”’ = Ai3(r – a)d”(o’ - ‘z) ~ $(z) (1)

where A is a constant which determines current and field

intensity, n is a positive integer which characterizes the

symmetry in O of the currents and fields, ~H the phase

shift between adjacent rings, and & (z)e ‘j~z the current

distribution across the pth ring. We shall postulate for the

current distribution that is applicable to an isolated

narrow thin ring

&(z)= lw((z+; -pH)(pH+; -z)) -1’2,

o,

elsewhere.

This approximation was used earlier by Sensiper in his

helical line study [9]. The variation in cosnO for the
current density implies for the azimuthal variation of the

fields components, through Maxwell’s equations

E,= e,(r,z) sin n/3&”””, E@= eO(r,z) cos nOd”@’

E== ez(r, z) sin nOd”’”, H,= h,(r,z) cos nOd”’”

HO= /z@(r,z) sin n&#”~, Hz= h,(r,z) cos nOd”””. (3)

B. Field Component Expressions

From Maxwell’s equations, we deduced the following

relations satisfied by the longitudinal components:
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a 2e --,+$.:~aez n2 “n aj
+k2ez= –&$

t)r:~ r~ rz z
The fields components are obtained by means of the

inverse Hankel transform (Appendix 1) and using the. . .
following integral [10]:

where k ❑ =ti(qL) 1f2 = ti/ c is the wavenumber, c the pa-mit-

tivity, p the permeability of the medium, and c the light

velocity.

Using Hankel transform (see Appendix I), we obttiin

(5)

In the current density expression (l), the periodic func-

tion X~P (z) given by (2) is expanded in a Fourier series

~.—~

where 1== aw is the total current on a ring, and

(7)

Introducing the magnetic transverse component into

the relation V oH= O and the z component of V X H= jw

E, we obtain

(h,- h,) {~–1)=~

[

hjn)

1
~ jof.e~n) + ~ . (8)

Similarly, introducing the electric transverse component

into the relation V E= (V .Y)/jac and the z comporlent of

V X E = – ju~, we obtain

[

ae(n}
~~~J.(rs).iods](e,- e,)(”+’)= ~ jq.dz~n}- -& - —

(9)

(no)

We have (e~”’ is omitted)

(11)

It is useful to check that, at r= a, the tangential electric

field is continuous everywhere

E;= E=’, E;= E;

and that the discontinuity in the tangential magnetic field

is proportional to the total surface current density

H: – H=’ = ~ &“”t cos n9 ~ Dme ‘jfi.z.
m=—cc

The subscripts i and e refer, respectively, to the internal

(r <a) and external (r >a) field. These relations verify the

continuity requirement of the fields at r = a.

III. ENERGETIC AND DISPERSION RELA~XONS

A. Stored Energy

After integration over 0, the time-average magnetic

energy and the time-average electrical energy per unit

length are

When the total field components are written in terms of

their space harmonics, the general term of the double

summation for m #p can be written in the form

g.~(r)flP(r) exp {~(P – m)2~z/ H }. After integration ‘over
z from – H/2 to H/2, the cross terms vanish and the

resulting expression is the sum of the energy storecl by

each space harmonic individually. After applying the

Hankel transform, (12) become
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TABLE I
DISPERSION RELATION, STOREDENERGY,AND POWERFLOW

(ARGUMENT OF MODIFIED BESSEL FUNCTION IS area)

I

f Inz < In (a a) K= (am.) + k2 .2 I:Dispersion

(m

(ama) K; (ama)

1

D:=O

relation ~=m
am

2

P==

{[

~ % : <( B~+k2)+k2a2 1[ 1
*2k2 ‘2=2

I: Kn+I K1 -—I K -_~lKt

}

D:

20?sH2 ~--- am 2 m nna3nn nn

m
am

Ill

.(e; -e;)(n+l}+(er+e,) {n-l} (~:+e;){n-l}]ds.

Using (8) and (9) and introducing the values of e~”} and

h~”} given in (7), we obtain

@nz{p:sz+(sz–kz }) 2J~(as) + k4a2s2J~2(a.s) ~ d~.

“J o S2(S2+ a;)2

Using the integrals given by Appendix II we obtain the

expressions in Table I. The total stored energy per unit of

length is

v=mM+mE=2mM=2wE. (13)

B. Power Flow

The time-average energy flow along the line is the real

part of the integral of the complex Poynting vector over a

cross section. After integration over /3, we obtain

Pz=~Re
[J 1

‘(erh~ – e,h~)r dr . (14)
o

The general term of the double summation m #p is a

function of z. But since the total power flow cannot be a

function of z, it is permissible to take the average value P

of P=, over one period. Using the Hankel transform, the

time-average power flow can be written in the form

P=~~~[(e,-eo){”+ l}(h;+hj){n+l)

-(e, +eo){”-’)(h~-h~) (”-’) ]sfi.

With (7)–(9), the power flow becomes

2;:;2 .>_m D:P=—

“1

UJk2a2&s2J~2(as) – n2/3~(s2 – k2)J~2(as)

o S2(S2+ a:)2

Integrals given in Appendix II provide the final expression

for the power flow in Table I.

C. Dispersion Relation and Group Veloci&

The dispersion relation is obtained by specifying that

~~ = ~fi (see Table I). The same dispersion relation

could be obtained by writing

J
E*J* dV=O

v

because, from Maxwell’s equations

J
~~– ~~=~ E.J*dV=O

4@ ~
(15)

where V is the volume where the current is different from

zero, that is, on the ring surface. The group velocity

which, for a periodic structure, is equal to the energy

velocity [11 ], is the ratio of the average power flow to

average stored energy per unit length

do P
Vg=q=%. (16)
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Fig. 2. Tharretical dispersion cnrves (a/H= 3, w/H= 1/4). The de-
tails of the curves near the maxima are shown inside the circles with

an expanded vertical scale.

~ is always positive and the group velocity has the same

sign as the power flow. For ~H = T whatever the value of

u, P goes to zero because of pairing of equal positive and

negative terms of the sum ( /3~ = – ~_ ~ _ ~). This property

is consistent with the requirement that the group velocity

is zero at cutoff.

IV, ANALYSIS OF THE ENERGETIC AND DISPERSION

REL.4T10NS

The solution of the dispersion relation (Table I) gives

the dispersion curves. But, to reduce the computation

time, we have chosen to integrate (16), which can be

written

~; =f(x,y), with x = j3H and y = kH.

This first-order differential equation is solved numerically

using a fourth-order Runge–Kutta integration process

with initial condition y(xO) = y. obtained by solving the

dispersion relation for X.= ~. The value of stored energy

and of power flow is given during the integration process.

A particular line with a/H= 3 and w/H= 1/4 has

been studied in detail. In the following figures, the limit

values, obtained with only the fundamental term of the

series reported in Table I, are represented by clouble

arrows. Fig. 2 shows the dispersion curves of the three

first modes. From this diagram, we see that only one

hybrid wave can propagate along the line for each value

of n #O and the circular symmetry mode n = O does not

exist. Accordingly, the fundamental mode has dipolar

symmetry. For this value of a/H, the dispersion curves go

through a maximum (ka)~aX =n+An with O< An<<l; but

when a/H decreases, the maximum goes on the right and

disappears.

In Figs. 3 and 4, we have plotted the variation of power

flow and stored energy for the first modes against the
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Fig. 3. Variation of the normalized power flow as a furlction of the
radial propagation coefficient for the first modes (a/H= 3, w/H= 1/4).
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Fig. 4. Variation of the normalized stored energy as a function of the
radial propagation coefficient for the first mocles (a/H= 3, w/H = I/4).

radial propagation coefficient a,= (/3 2– k2)1i2. When a,

decreases to zero, c~/Z12 and P/Z12 increase and tend

to a limit for the modes 3 and 4, whereas they tend to

infinity for the first two modes.

V. COMPARISON OF EXPERIMENTAL ND

THEORETICAL VALUES

For recording the dispersion curves of the first modes,

we introduced a section of the ring line between two

metallic planes to obtain a resonator. The geometrical

parameters of the line are equal to those of Fig. 5, but ring

thickness is 0.5 mm. Two Teflon supports hold up the
rings and keep constant the period.

From Fig. 5, we see that the experimental curves are

practically identical to the theoretical ones (error is re-

spectively less than 0.15 and 0.3 percent for the two first

modes). The good agreement between the theoretical and

experimental values of the T mode (Fig. 6) when the ring
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Fig. 5. Theoretical (— ) and experimental (----- .-) dispersion
curves for the two first modes. Geometrical parameters: 2a= 7.05 cm,
H=3 cm, w=O.5 cm (a/H= 1.175, w/H= 1/6).
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Fig. 6. Values of the ~—cutoff versus period of the modes in Fig. 5

(—: theoretical, . – . . . –: experimental).

pitch H increases, corroborates the validity of the theore-

tical analysis.

VI. ELECTROMAGNETIC ENERGY DISTRIBUTION

AROUND THE LINE

The energy concentration around the line is measured

by the amount of stored energy per unit length outside a

cylinder of radius d > a surrounding the line. This stored

energy is given by (12) except for an integration over r

from the radial distance d to infinity. Using the field

components, we obtain, after rearranging, the following
expression:

‘k2a2’;2(ama)l{k2d2{K~(amd)(1+

(x; )

Fig. 7. Field extension around the ring line against the ratio d/a

(d~a)witha/H=3, w/H= l/4.

The ratio of the stored energy outside a cylinder of radius

d to the total stored energy (~&,/~) for the dipolar

mode, is plotted against d/a for various points of the

dispersion curve in Fig. 7. The rapid decrease of the field

extension with increasing a,= ( ~ 2– k2)1f2 can be noticed.

This property gives the possibility of restricting the field

extension to any desired value.

VII. STUDY OF A Low-LGss PROTOTYPE LINE

The fundamental mode is somewhat different from the

other modes of the ring line. Its dispersion curve goes

down to low frequencies with a phase velocity and a

group velocity near to the light velocity. The power flow
becomes large, and the field extension around the line is

important. Accordingly, the line attenuation a== PJ/2P

(PJ ohmic losses and P power flow) tends to zero as P
increases for 1 constant. So, by varying the phase constant

P of this mode, it is possible to select the concentration of

energy around the rings and the value of attenuation. Loss

measurements have been made on a prototype line operat-

ing on this mode.

A. Proto@pe Line and Measuring Eqtapment.

The line consists of rings at equally spaced intervals

along a metallic rod (Fig. 8). The electromagnetic in-

fluence of the rod is small because the mode is dipolar.

The rings and the rod are of an aluminum alloy (AGST4)

for which the conductivity is u= 2.857x 107 O/m. A sec-

tion of this structure is introduced between two aluminum

plates, 2-m square, to form a resonator. One of these

plates is fixed, the other attached to a movable carriage

permitting adjustment of the resonator length. A series of

holes was drilled in these short-circuit planes, allowing us

to investigate the r and O variation of the field [12].

B. Dispersion Curve and Attenuation Constant

Fig. 9 shows the theoretical (a) and experimental (b)

dispersion curves of the dipolar mode. The slight dis-

crepancy between theoretical and experimental values is

explained by the fact that there is no rod in the theoretical

case. On the other hand, the rod introduces another mode
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Fig. 8. Low-loss prototype line (2a= 0.03 m, H= 0.028 m,
w = t =0.005 m).
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Fig. 9. Dispersion curves of the prototype line (Figs. 8, 9) a –----–the-
oretical curve and b .– .– .– experimental curve for the dipolar mode,

(c) but its stopband frequency is much lower than that in

the dipolar mode. It corresponds to the fundamental

mode of the structure studied by Birdsall and Everhart

[13]. This periodic structure is a modification of the con-

trawound helix introduced by Chodorov and Chu [14].

Measured attenuation of this mode is important. The

attenuation constant of the dipolar mode is obtained by

the classical relation a== @/2vg QO where QO is the Qfac-

tor of the line. To that effect, we measured the Qfactor of

the resonator by transmission method for several lengths

of the line at the same frequency; QO is deduced frc~m the

Qfactor of the resonator by subtracting losses cm the

short-circuit planes [15]. Fig. 10 shows the relative phase

velocity and the measured attenuation for the line ~shown

in Fig. 8. The attenuation is less than 5 dB/km below 1.8

GHz. A theoretical estimation of attenuation has been

made elsewhere, and these values corroborate the experi-

mental ones [15]. Field distribution near the ring line was

obtainecl [16] with close agreement between measured and

calculated values, but we omitted it from this paper. For

instance, the electromagnetic energy distribution is con-

tained in a 40-cm (=26.7 a) radius cylinder when a= is

equal to 10 dB/km.
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Fig. 10. Measured variation of the relative phase velocity and attmma-
tion as a function of frequency.

VIII. CONCLUSIONS

The open-ring line is a surface waveguide just like

dielectric rods and dielectric pipes. But its dispersion

diagram is quite different because it does not lhave circu-

larly symmetric TE or TM modes. However, the open-ring

line and dielectric guides have one property in common:

the fundamental mode is a hybrid dipolar mode without

lower cutoff frequency. At lower frequencies, the electro-

magnetic wave propagates with phase velocity and group

velocity near the light velocity, and the fields extend

considerably beyond the line. By varying the radial propa-

gation coefficient of this mode, it is possible to select the

energy concentration around the rings and the power ~low

value. The wider the energy is spread, the smaller the

attenuation constant. This property has been cclrrobori~ted

by the attenuation values of a prototype line operating on

the dipolar mode of the ring line. The measured attenua-

tion (less than 5 dB/km below 1.8 GHz) allows U!S to

consider the open-ring line as a low-loss line. The line

attenuation can be improved if the aluminum rings are

replaced by copper rings. This line can be supported

above the ground on plastic pipes that have to be set on

the plane of rod. In this way, the electromagnetic field is

only slightly perturbed (dipolar mode). These rlesults <how

that practical applications like railway traffic control and

railway obstacle detection may be considered [17]. In such

applications, considerable difficulties may be encountmed

due to bends in the path of the line, scattering by the

supports, and atmospheric conditions. Further studies

could be required to analyze such effects.

APPENDIX I

HANKEL TRANSFORM PROPERTIES [18], [“19]

The n-order Hankel transformation transforms a func-

tion u(r) into a new function u{”}(s) such that

u{”)(s)= ~mr J.(rS)U(Y) dr
o

u(r)= ~~s J.(rs)u{n}(s) ds.
o
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Operational properties

()

~ {n)
—
r

=;[U{.+V+U(.-O]

d~ {n)

()z
=-; [(n+l)u{”-’)-(n-l) u(”+’)]

1 d(m) {“} s ~{.+l}_u{. _l}[1——
r dr ‘j[ 1

[-
d2u 1, 1 du rz2 ‘“)=

dr2 -Y
– ~zu{~)

r dr

and integral product

~m~u{n)(~)~(n)(~) d~=~~ru(r)u(r)dr
o 0

are well suited for cylindrical coordinate system.

APPENDIX II

1

m ~~~(a~)dss Zn(aa)Kn(aa)

o s2+a2

I

~ Sz.l;z(as)ds
= a21~(aa)K~(cra)

o S2+ a2

J

m J$(a.s)~
=; {z;(aa)Kn(aa)+ln( aa)K;(aa)}

o (s2 + a2)2

/

~ s2J;2(as)s u%

o (s2+ a2)2 =
– ; {z;(aa)Kn(aa)

(}
+ l.(aa)l$~(aa)} 1 + ~

~mM@$=+

~“.~;la)d= -;.
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